Ecuaciones Diferenales

Una $E D$ es una expresión matema'tica que tiene form a de ecuacion $[F()=0]$ y que contiene al menos una de las cterivadas de una funcion desconosida I/amada incógnitas que depende de al onenos un a variable independiente (x)

Ecuación

$$
\begin{aligned}
& \Longrightarrow \quad \frac{d y}{d x}=0 \quad y(x) \quad x \\
& \longrightarrow \begin{array}{l}
y^{\prime}(x)=0 \\
\dot{u}_{x}=0
\end{array} \quad y(x)=c_{1} \rightarrow \frac{d y}{d x}=0 \\
& \xrightarrow[2,3]{ } D_{x} y=0 \quad \begin{array}{l}
{\left[\begin{array}{l}
{[0]=0 \rightarrow 0 \equiv 0} \\
\text { es una Solucion }
\end{array}\right.} \\
y=5 \quad y=\sqrt{3}
\end{array}
\end{aligned}
$$

$y=c$, solucion general $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \begin{array}{l}
\varphi=c_{1} e^{x} \\
\text { selucion }
\end{array} \quad \frac{d y}{d x}=c_{1}\left[e^{x}\right] \\
& \begin{array}{l}
\text { soluian } \\
\text { general }
\end{array} \\
& c_{1}=\frac{y}{e^{x}} \quad c_{1}=\frac{\frac{d y}{d x}}{e^{x}} \\
& \frac{y}{e^{x}}=\frac{d y}{\frac{d x}{e^{x}}} \rightarrow \frac{d y}{d x}=y \\
& y_{S_{G}}^{y_{1} e^{x}} \leftrightarrow \underbrace{\frac{d y}{d x}-y=0}_{\text {EDO }}
\end{aligned}
$$

$$
y=C_{1} \cos (x)+C_{2} \operatorname{sen}(x)
$$

Pan

$$
\begin{aligned}
& \frac{d y}{d x}=-c_{1} \operatorname{sen}(x)+c_{2} \cos (x) \\
& \frac{d^{2} y}{d x^{2}}=-c_{1} \cos (x)-c_{2} \operatorname{sen}(x) \\
& \frac{d^{2} y}{d x^{2}}=-\left(c_{1} \cos (x)+c_{2} \operatorname{sen}(x)\right) \\
& \frac{d^{2} y}{d x^{2}}=-y \rightarrow \frac{d^{2} y}{d x^{2}}+y=0
\end{aligned}
$$

$$
\begin{aligned}
& y=C_{1} x^{2}+c_{2} x+C_{3} \quad \text { orden }=3 \\
& \frac{d y}{d x}=2 c_{1} x+c_{2}+(0) \\
& \frac{d^{2} y}{d x^{2}}=2 c_{1}+(0)+(0) \\
& \frac{d^{3} y}{d x^{3}}=0
\end{aligned}
$$

August 17 2023.GWB - 7/12 - Thu Aug 172023 12:03:16

$$
\begin{aligned}
& y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2}+c_{4} x+c_{5} \\
& \frac{d \eta}{d x}=c_{1} e^{x}+c_{2}\left(x e^{x}+e^{x}\right)+2 c_{3} x+c_{4} \\
& =\left(c_{1}+c_{2}\right) e^{x}+c_{2} x e^{x}+2 c_{1}^{x} x+c_{1} \\
& \frac{d y^{2}}{d x^{2}}=\left(c_{1}+c_{2}\right) e^{x}+c_{2}\left(x e^{x}+e^{x}\right)+2 c_{3} \\
& =\left(c_{1}+2 c_{2}\right) e^{x}+c_{2} x e^{x}+2 c_{3} \\
& \frac{d^{3} y}{d x^{3}}=\left(c_{1}+2 c_{2}\right) e^{x}+c_{2}\left(x e^{x}+e^{x}\right)^{3}+(0) \\
& =\left(c_{1}+3 c_{2}\right) e^{x}+c_{2} x e^{x} \\
& \frac{d^{y} y}{d x=}=\left(c_{1}+3 c_{2}\right) e^{x}+c_{2}\left(x e^{x}+e^{x}\right) \\
& \longrightarrow \frac{d^{\prime \prime}}{d x^{4}}=\left(c_{1}+4 c_{2}\right) e^{x}+c_{2} x e^{x} \\
& \frac{d^{5}}{d x s^{5}}=\left(c_{1}+\psi_{2}\right) e^{x}+c_{2}\left(x e^{x}+e^{x}\right) \\
& \left.\left.\longrightarrow \frac{d^{5} y}{d x^{s}}=\left(c_{1}+\zeta_{2}\right) e^{x}+c_{2} \right\rvert\, x e^{x}\right) \\
& \frac{d^{5}}{d x^{5}} \frac{d^{4} y}{d x^{4}}=c_{2} e^{x}+(0) \quad c_{2}=\frac{\frac{d x^{5}}{d x-}-\frac{d y}{d x}}{e^{x}}
\end{aligned}
$$

$$
\begin{aligned}
& C_{1}=\frac{d^{5}}{d x s^{5}}-5\left(\frac{d h^{5}}{d x^{2}}-\frac{y^{4}}{d x^{4}}\right)-x\left(\frac{\sqrt{\frac{5}{d x}}-\frac{d^{4}}{d x^{4}}}{d x^{\prime}}\right) \\
& c_{1}=\frac{d y}{d x x^{2}}(1-5-x)+\frac{d y}{d x^{4}}(5+x) \\
& (d-1)^{2} D^{3} y=0 \quad\left(x^{2}-2 x+1\right) D^{3} y=0 \\
& \begin{array}{l}
\frac{d^{5}}{d x s}-2 \frac{d^{4} y}{d x}+\frac{d^{3} y}{d x 3}=0 \\
\left(d^{2}-2 D+1\right) y=0
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\frac{d^{2} y}{d x^{x}}-2 \frac{d y}{d x}+y=0 \\
y=c_{1} e^{x}+c_{2} x e^{x} \\
\frac{d y}{d x}=c_{1} e^{x}+c_{2}\left(x e^{x}+e^{x}\right) \\
=\left(c_{1}+c_{2}\right) e^{x}+c_{2} x e^{x} \\
\frac{d^{\prime} y}{d x^{2}}=\left(c_{1}+c_{2}\right) e^{x}+c_{2}\left(x e^{x}+e^{x}\right) \\
==\left(c_{1}+2 c_{2}\right) e^{x}+c_{2} x e^{x} \\
\frac{d^{2} y}{d x^{2}} \Leftrightarrow\left(c_{1}+2 c_{2}\right) e^{x}+c_{2} x e^{x} \\
+2 \frac{d y}{d x} \Rightarrow\left(-c_{1}-2 c_{2}\right) e^{x}-r c_{2} x e^{x} \\
+ \\
y \Leftrightarrow \frac{c_{1} e^{x}+\quad c_{2} x e^{x}}{(0)+0) e^{x}+(0) x e^{x}} \\
0 \quad(0)
\end{gathered}
$$

propiedad (1)EDO
"orden" de una ecuación diterencial ordinarin al "ordeu" de la derivada de mayor "orden"

$$
\begin{aligned}
& \frac{d^{4} y}{d x^{4}}+5 \frac{d^{2} y}{d x^{2}}-6 y=0 \quad \text { orden }=4 \\
& y_{g}=c_{1} \varphi_{1}+c_{2} y_{2}+c_{3} y_{3}+c_{4} y_{4}
\end{aligned}
$$

y_{1}
$\left.y_{2}\right\}$ solunone particulares $\begin{array}{ll}y_{3} \\ u_{4} & \text { "fundamentales" }\end{array}$

$$
\begin{aligned}
& P(D)= \begin{cases}x^{n} & n=0,1,2 \ldots \\
e^{a x} & a \in \mathbb{R} \\
\begin{cases}\cos (b x) & \\
\operatorname{sen}(b x) & b \in \mathbb{R}\end{cases} \\
X \quad \alpha(x) \frac{1}{x^{2}} \tan (b x)\end{cases}
\end{aligned}
$$

$$
\text { RDO }\left\{\begin{array}{l}
\alpha / N-\begin{array}{c}
1 S G \cdot(\text { L'nica }) \\
\infty S P . \\
W \alpha .
\end{array} \left\lvert\, \begin{array}{cc}
1 S G \\
-\infty & \delta P \\
1 S G \\
\infty & S P \\
\# S S
\end{array}\right.
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Tareas }(1-10)-20 \% \\
& \text { Series }(4)-20 \% \\
& \text { Ex. Prec. (2) }-60 \%
\end{aligned}
$$

$$
\text { Proor sexp } 100 \%
$$

APCRB BP. \rightarrow EXSNTOS

$$
\left.F F \Rightarrow \begin{array}{l}
P S-50 \% \\
E F-50 \%
\end{array}\right\}
$$

